# DEPARTMENT OF THE ARMY TECHNICAL BULLETIN # CALIBRATION PROCEDURE FOR CAPACITANCE, INDUCTANCE, AND RESISTANCE TEST SET AN/URM-90 (ZM-30/U) AND UNIVERSAL IMPEDANCE BRIDGE, ELECTRO-SCIENTIFIC INDUSTRIES (ESI), MODEL 250DE Headquarters Department of the Army, Washington, DC 4 August 2005 Distribution Statement A: Approved for public release; distribution is unlimited. ## REPORTING OF ERRORS AND RECOMMENDING IMPROVEMENTS You can improve this manual. If you find any mistakes or if you know of a way to improve these procedures, please let us know. Mail your letter or DA Form 2028 (Recommended Changes to Publications and Blank Forms) directly to Commander, US Army Aviation and Missile Command, AMSAM-MMC-MA-NP, Redstone Arsenal, AL 35898-5000. A reply will be furnished to you. You may also provide DA Form 2028 information to AMCOM via e-mail, fax, or the World Wide Web. Our FAX number is: DSN 788-6546 or Commercial 256-842-6546. Our e-mail address is: 2028@redstone.army.mil. Instructions for sending an electronic 2028 may be found at the back of this manual. For the World Wide Web, use: https://amcom2028.redstone.army.mil. | | | | Paragraph | Page | |---------|------|---------------------------------------------|-----------|------| | SECTION | I. | IDENTIFICATION AND DESCRIPTION | | | | | | Test instrument identification | 1 | 2 | | | | Forms, records, and reports | 2 | 2 | | | | Calibration description | 3 | 2 | | | II. | EQUIPMENT REQUIREMENTS | | | | | | Equipment required | 4 | 3 | | | | Accessories required | 5 | 3 | | | III. | CALIBRATION PROCESS FOR AN/URM-90 (ZM-30/U) | | | | | | Preliminary instructions | 6 | 4 | | | | Equipment setup | 7 | 4 | | | | LRC dials | 8 | 5 | | | | LRC dial multiplier | 9 | 6 | <sup>\*</sup>This bulletin supersedes TB 9-6625-1014-35, 20 June 1987 including all changes. | | | Paragraph | Page | |-----|-----------------------------------------------|-----------|------| | | QX1 rheostat | 10 | 7 | | | Oscillator | 11 | 8 | | | Capacitance | 12 | 9 | | | Final procedure | 13 | 10 | | IV. | CALIBRATION PROCEDURE FOR ESI,<br>MODEL 250DE | | | | | Preliminary instructions | 14 | 10 | | | Equipment setup | 15 | 10 | | | LRC dials | 16 | 11 | | | QX1 rheostat | 17 | 12 | | | Resistance | 18 | 13 | | | Oscillator | 19 | 14 | | | Capacitance | 20 | 14 | | | Dissipation | 21 | 14 | | | Final procedure | 22 | 16 | # SECTION I IDENTIFICATION AND DESCRIPTION - 1. Test Instrument Identification. This bulletin provides instructions for the calibration of Capacitance, Inductance, and Resistance Test Set AN/URM-90 (ZM-30/U) and Universal Impedance Bridge, Electro-Scientific Industries (ESI), Model 250DE. The manufacturer's manual was used as prime data source in compiling these instructions. The equipment being calibrated will be referred to as the TI (test instrument) throughout this bulletin. - a. Model Variations. Variations among models are described in text. - **b. Time and Technique**. The time required for this calibration is approximately 12 hours, using the dc and low frequency technique. ## 2. Forms, Records, and Reports - **a.** Forms, records, and reports required for calibration personnel at all levels are prescribed by TB 750-25. - **b.** Adjustments to be reported are designated (R) at the end of the sentence in which they appear. When adjustments are in tables, the (R) follows the designated adjustments. Report only those adjustments made and designated with (R). - **3. Calibration Description.** TI parameters and performance specifications which pertain to this calibration are listed in table 1. Table 1. Calibration Description | | Table 1. Cambration Bescription | | | |--------------------|--------------------------------------------------------------------------------------------|--|--| | Test instrument | | | | | parameters | Performance specifications | | | | | AN/URM-90 (ZM-30/U) | | | | LRC resistance | Range: $0.1 \text{ m}\Omega$ to $11 \text{ M}\Omega$ | | | | | Accuracy: $\pm$ (0.35% +1 dial div) on 0.1 $\Omega$ range | | | | | $\pm$ (0.2% + 1 dial div) on 100 k $\Omega$ range | | | | | $\pm$ (0.15% + 1 dial div) on all other ranges | | | | Frequency | Range: 1000 Hz | | | | | Accuracy: ± 1% | | | | Capacitance | Range: $0.1 \text{ pF}$ to $100 \mu\text{F}$ | | | | | Accuracy: $\pm (0.5\% + \text{dial div}) \text{ from } 100 \text{ pF to } 100 \mu\text{F}$ | | | | | $\pm$ 2% above 100 $\mu$ F; $\pm$ 2 pF below 100 pF | | | | | ESI MODEL 250DE | | | | LRC resistance | Range: 0 to 12 M $\Omega$ | | | | | Accuracy: $\pm (0.1\% + 1 \text{ dial div})$ | | | | QX1 rheostat | Range: $3184$ to $15.920 \Omega$ | | | | | Accuracy: $\pm (1\% + 1 \text{ dial div})$ | | | | Frequency | Range: 1000 Hz | | | | | Accuracy: ± 1% | | | | Capacitance | Range: 0 to 1200 μF | | | | | Accuracy: $\pm (0.2\% + 1 \text{ dial div} + 1\% \text{ X dissipation factor})$ | | | | Dissipation factor | Range: 0 to 1.05 | | | | | Accuracy: $\pm (1\% + 1 \text{ dial div})$ | | | # SECTION II EQUIPMENT REQUIREMENTS - 4. Equipment Required. Table 2 identifies the specific equipment to be used in this calibration procedure. This equipment is issued with Secondary Transfer Calibration Standards Set AN/GSM-286, AN/GSM-287, or AN/GSM-705. Alternate items may be used by the calibrating activity. The items selected must be verified to perform satisfactorily prior to use and must bear evidence of current calibration. The equipment must meet or exceed the minimum use specifications listed in table 2. The accuracies listed in table 2 provide a four-to-one ratio between the standard and TI. Where the four-to-one ratio cannot be met, the actual accuracy of the equipment selected is shown in parenthesis. - **5.** Accessories Required. The accessories required for this calibration are common usage accessories, issued as indicated in paragraph 4 above, and are not listed in this calibration procedure. Table 2. Minimum Specifications of Equipment Required | | | Manufacturer and model | |-----------------|----------------------------|------------------------------| | Common name | Minimum use specifications | (part number) | | AUTOTRANSFORMER | Range: 105 to 125 V ac | Ridge, Model 9020A | | | Accuracy: ± 1% | (9020A) | | CAPACITANCE | Range: 0.1µF | Arco Electronic, Model SS-32 | | STANDARD | Accuracy: ± 0.075% | (7907233) | Table 2. Minimum Specifications of Equipment Required - Continued | | 1 1 1 | 1 | |----------------------|--------------------------------------------|-------------------------------| | | | Manufacturer and model | | Common name | Minimum use specifications | (part number) | | MULTIMETER | Range: 0 to 20 V ac | Fluke, Model 8840A/AF05 | | | Frequency: 1kHz | (AN/GSM-64D) | | | Accuracy: ± 3% | | | RESISTANCE | Range: Dc detector | ESI, Model 801 (7912151-2) | | MEASUREMENT | 0 to 10 V | w/ESI, Model 230B (7912150-2) | | SYSTEM <sup>12</sup> | Bridge: 0 to 1.2 M $\Omega$ | | | | Accuracy: ± 0.025% | | | RESISTANCE | Range: $0 \text{ to } 1.2 \text{ M}\Omega$ | Biddle-Gray, Model 71-631 | | STANDARD | Accuracy; ± 0.03% | (7910328) | $<sup>^{1}\</sup>mathrm{Dc}$ detector sensitivity $5\mu V.$ # SECTION III CALIBRATION PROCESS FOR AN/URM-90 (ZM-30/U) # 6. Preliminary Instructions - a. The instructions outlined in paragraphs 6 and 7 are preparatory to the calibration process. Personnel should become familiar with the entire bulletin before beginning the calibration. - **b.** Items of equipment used in this procedure are referenced within the text by common name as listed in table 2. - c. Unless otherwise specified, verify the result of each test and, whenever the test requirement is not met, take corrective action before continuing with the calibration. Adjustments required to calibrate the TI are included in this procedure. Additional maintenance information is contained in the manufacturer's manual for this TI. - **d.** Unless otherwise specified, all controls and control settings refer to the TI. # 7. Equipment Setup ## **WARNING** HIGH VOLTAGE is used or exposed during the performance of this calibration. DEATH ON CONTACT may result if personnel fail to observe safety precautions. REDUCE OUTPUT(S) to minimum after each step within the performance check where applicable. - **a.** Remove protective covers from TI. - **b.** Connect TI to autotransformer. - c. Connect autotransformer to a 115 V ac source and adjust for a 115 V output. - **d.** Loosen locking screw one full turn (located on right hand side of TI galvanometer zero adjustment knob). <sup>&</sup>lt;sup>2</sup>Limited deployed. - e. Adjust galvanometer zero adjustment control for zero indication. - **f.** Tighten screw loosened in **d** above. - g. Short EXT D-Q binding posts with a bus bar or jumper. # 8. LRC Dials - (1) Position controls as listed in (a) through (d) below: - (a) **DETECTOR** switch to **METER**. - (b) LRC DIAL MULTIPLIER switch to $1K\Omega$ . - (c) **CIRCUIT SELECTOR** switch to **RX1**. - (d) LRC outer dial to 1; LRC middle and inner dials to 0. - (2) Connect resistance standard to L-R binding posts of TI. - (3) Adjust resistance standard to $1000 \Omega$ and set TI **GENERATOR** switch to **DC HIGH**. - (4) Adjust resistance standard for a null on galvanometer. Set **METER SHUNT** switch for fine adjustment. Resistance standard will indicate between 997.5 and 1002.5 $\Omega$ . - (5) Repeat technique of (3) and (4) above for **LRC** dial settings and indications listed in table 3. Resistance standard will indicate within limits specified. - **b.** Adjustments. No adjustments can be made. Table 3. LRC Dial Check | Test | instrument LRC dial se | ettings | Resistance standa | ard indications (Ω) | |-------|------------------------|---------|-------------------|---------------------| | Outer | Middle | Inner | Min | Max | | 2 | 0 | 0 | 1996 | 2004 | | 3 | 0 | 0 | 2994.5 | 3005.5 | | 4 | 0 | 0 | 3993 | 4007 | | 5 | 0 | 0 | 4991.5 | 5008.5 | | 5 | 1 | 0 | 5091.35 | 5108.65 | | 5 | 1 | 1 | 5101.34 | 5118.67 | | 5 | 1 | 2 | 5111.32 | 5128.68 | | 5 | 1 | 3 | 5121.31 | 5138.70 | | 5 | 1 | 4 | 5131.29 | 5148.71 | | 5 | 1 | 5 | 5141.28 | 5158.73 | | 5 | 1 | 6 | 5151.26 | 5168.74 | | 5 | 1 | 7 | 5161.25 | 5178.76 | | 5 | 1 | 8 | 5171.23 | 5188.77 | | 5 | 1 | 9 | 5181.22 | 5198.79 | | 5 | 2 | 0 | 5191.20 | 5208.80 | | 5 | 3 | 0 | 5291.05 | 5308.95 | | 5 | 4 | 0 | 5390.90 | 5409.10 | | 5 | 5 | 0 | 5490.75 | 5509.25 | | 5 | 6 | 0 | 5590.60 | 5609.40 | | 5 | 7 | 0 | 5690.45 | 5709.55 | | 5 | 8 | 0 | 5790.30 | 5809.70 | | 5 | 9 | 0 | 5890.15 | 5909.85 | Table 3. LRC Dial Check | Test instrument LRC dial settings | | | Resistance standa | ard indications (Ω) | |-----------------------------------|--------|-------|-------------------|---------------------| | Outer | Middle | Inner | Min | Max | | 6 | 0 | 0 | 5990 | 6010 | | 7 | 0 | 0 | 6988.5 | 7011.5 | | 8 | 0 | 0 | 7987 | 8013 | | 9 | 0 | 0 | 8985.5 | 9014.5 | | 10 | 0 | 0 | 9984 | 10,016 | # 9. LRC Dial Multiplier # a. Performance Check - (1) Connect **EXT DET** terminals to **INPUT** terminals of dc detector (part of resistance measurement system). Set **DETECTOR** switch to **EXTERNAL**. - (2) Connect resistance standard to **L-R LO** binding posts. - (3) Adjust LRC dials to 0.05 and set LRC DIAL MULTIPLIER switch to R-0.1 $\Omega$ . - (4) Adjust resistance standard for $0 \Omega$ . - (5) Measure resistance of leads utilized in step (2) above, using TI and dc detector. Record TI indication. - (6) Adjust resistance standard for $1 \Omega$ . - (7) Adjust LRC dial for 0 indication on null meter. Record dial indication. - (8) Subtract value recorded in (5) above from value recorded in (7) above. Difference will be between 0.9964 and 1.0036 $\Omega$ after multiplying LRC dials by LRC multiplier. - (9) Repeat technique of (6) through (8) above, using settings listed in table 4. TI $\Omega$ values will be within limits specified. #### NOTE For values above 1000 $\Omega$ , it is not necessary to subtract value obtained in (5) above. # **b.** Adjustments. No adjustments can be made. Table 4. LRC Dial Multiplier Check | | Test instrument | | | |---------------------|-------------------|-----------------|-------------------| | | LRC dial | Resista | ince (Ω) | | Resistance standard | multiplier switch | (LRC dials x LR | C dial multiplier | | indications | settings | switch s | settings) | | $(\Omega)$ | $(\Omega)$ | Min | Max | | 10 | 1 | 9.984 | 10.016 | | 100 | 10 | 99.84 | 100.16 | | 1,000 | 100 | 998.4 | 1,001.6 | | 10,000 | 1 K | 9,984 | 10,016 | | 100,000 | 10 K | 99,840 | 100,160 | | 1,000,000 | 100 K | 997,900 | 1,002,100 | # 10. QX1 Rheostat - (1) Disconnect TI from ac source and set CIRCUIT SELECTOR switch to L and D-QX1. - (2) Remove shorting strap from **EXT D-Q** binding post. - (3) Connect dc detector to resistance bridge (part of resistance measurement system), using straps supplied with dc detector. - (4) Connect lead from resistance bridge **UNKNOWN 1** terminal to TI **EXT D-Q HI** terminal, and connect lead from resistance bridge **UNKNOWN 2** terminal to TI **C** (high) terminal. - (5) Set the **Q** and **D-Q** dial to **6.3** on black scale. - (6) Adjust resistance bridge for a null indication on dc detector. If resistance bridge does not indicate between 9930 and $10,130 \Omega$ , perform **b**(1) through (4) below. - (7) Set TI CIRCUIT SELECTOR switch to L and QX100. - (8) Turn Q and D-Q dial to 6.3 on black scale. - (9) Connect clip and cable from resistance bridge **UNKNOWN 1** terminal to center terminal of variable resistance R24 (fig. 1), and connect lead from resistance bridge **UNKNOWN 2** terminal to **EXT D-Q HI** binding post. Figure 1. Capacitance, inductance, resistance adjustments. - (10) Adjust resistance bridge for a null indication on dc detector. If resistance bridge does not indicate between 65 and 67 $\Omega$ , perform **b**(1), and (5) through (7) below. - (11) Set **CIRCUIT SELECTOR** switch to **C** and **D-QX.01** position. - (12) Adjust resistance bridge for a null indication on dc detector. Resistance bridge will indicate 99 to 101 $\Omega$ . - (13) Set CIRCUIT SELECTOR switch to C and D-QX.1 position. - (14) Set **Q** and **D-Q** dial to **6.3** on black scale. - (15) Connect lead from resistance bridge **UNKNOWN 1** terminal to center terminal of R24 and connect lead from resistance bridge **UNKNOWN 2** terminal to the center terminal of R21 (fig. 1). - (16) Adjust resistance bridge for a null indication on dc detector. If resistance bridge does not indicate between 993 and 1013 $\Omega$ , perform **b**(8) through (10) below. - (17) Replace shorting strap removed in (2) above and connect TI to ac source and energize. # b. Adjustments - (1) Remove bridge chassis from case. - (2) Loosen set screws in collar of contact and collar assembly for R25 (fig. 1). - (3) Rotate contact arm along the winding until resistance bridge indicates a null of $10,030 \Omega$ . - (4) Tighten the two set screws in contact and collar assembly of R25 (fig. 1) (R). - (5) Loosen the two set screws in the collar of contact and collar assembly for R24 (fig. 1) - (6) Rotate contact arm along winding until resistance bridge indicates a null of $66 \Omega$ . - (7) Tighten the two set screws in the contact and collar assembly of R24 (fig. 1) (R). - (8) Loosen the two set screws in the collar of contact and collar assembly for R21 (fig. 1) - (9) Rotate contact arm along resistance winding until resistance bridge indicates a null of 1003 $\Omega$ . - (10) Tighten the two screws in contact and collar assembly of R21 (fig. 1) (R). - (11) Replace bridge chassis in case. # 11. Oscillator - (1) Connect equipment as shown in figure 2. - (2) Position controls as listed in (a) through (h) below: - (a) **CIRCUIT SELECTOR** switch to **L-D-QX-100H**. - (b) LRC DIAL MULTIPLIER switch to L-100H. - (c) **D-Q** dial (outer, black scale) to **10**. - (d) **DETECTOR** switch to **INTERNAL**. - (e) **GENERATOR** switch to **INTERNAL**. - (f) **OSC GAIN** control fully cw. - (g) Shorting bar connected to EXT D-Q binding posts. - (h) Adjust **LRC** outer dial off of **0**. - (3) Frequency counter will indicate between 990 and 1010 Hz, and multimeter will indicate at least $12\ V$ ac. - (4) Adjust autotransformer output from 105 to 125 V ac, while observing frequency counter. Indicated frequency will remain between 990 and 1010 Hz. - (5) Adjust autotransformer output to 115 V ac. Figure 2. Oscillator - equipment setup. **b.** Adjustments. No adjustments can be made. # 12. Capacitance - (1) Connect $0.1\,\mu F$ capacitance standard to C binding posts. - (2) Position controls as listed in (a) through (f) below: - (a) **CIRCUIT SELECTOR** switch to **D-QX.01**. - (b) AMP RESPONSE switch to PEAK. - (c) **DETECTOR** switch to **INTERNAL**. - (d) **GENERATOR** switch to **INTERNAL**. - (e) LRC dial MULTIPLIER switch to .01 $\mu$ F. - (f) **LRC DIAL** to **10.00**. - (3) Adjust TI LRC dial AMP GAIN, OSC GAIN, Q and D-Q dial for best null on electron ray tube. If capacitance standard is not furnished with a test report, final LRC dial setting will be between 9.949 and 10.051. If capacitance standard is furnished with test report, measured value will be within $\pm 0.5$ percent + 1 division on LRC inner dial of test report value. - **b.** Adjustments. No adjustments can be made. ## 13. Final Procedure - a. Deenergize and disconnect all equipment. - **b.** Annotate and affix DA label/form in accordance with TB 750-25. # SECTION IV CALIBRATION PROCESS FOR ESI, MODEL 250DE # 14. Preliminary instructions - a. The instructions outlined in paragraphs 14 and 15 are preparatory to the calibration process. Personnel should become familiar with the entire bulletin before beginning the calibration. - **b.** Items of equipment used in this procedure are referenced within the text by common name as listed in table 2. - c. Unless otherwise specified, verify the result of each test and, whenever the test requirement is not met, take corrective action before continuing with the calibration. Adjustments required to calibrate the TI are included in this procedure. Additional maintenance information is contained in the manufacturer's manual for this TI. - **d.** Unless otherwise specified, all controls and control settings refer to the TI. # 15. Equipment Setup ## WARNING HIGH VOLTAGE is used or exposed during the performance of this calibration. DEATH ON CONTACT may result if personnel fail to observe safety precautions. REDUCE OUTPUT(S) to minimum after each step within the performance check where applicable. #### NOTE Some TI's are operated by 115 V ac and some are battery operated. Make power connections accordingly. - a. Connect TI to autotransformer and connect autotransformer to a 115 V ac source. - **b.** Turn **DET GAIN** control cw out of **PWR OFF** position. - c. Set GEN DET switch to DC DET-DC EXT GEN. d. Adjust TI mechanical zero indication on meter. # 16. LRC Dials - (1) Position TI controls as listed in (a) through (d) below: - (a) **FUNCTION** switch to **RX10**. - (b) **GEN-DET** switch to **BATT-TEST**. - (c) **DET GAIN** control to **PWR OFF**. - (d) LRC controls to 0000. - (2) Connect leads from resistance bridge (part of resistance measurement system), UNKNOWN 1 terminal to TI EXT D-Q 1 terminal, and from UNKNOWN 2 terminal to TI RL 1 terminal. - (3) Adjust resistance bridge to obtain the best null indication on dc detector. Record resistance value. - (4) Set **LRC** dials to **0.020**. - (5) Adjust resistance bridge for null indication on dc detector. - (6) Subtract resistance value recorded in (3) above from value obtained in (5) above; difference will be between 19 and 21 $\Omega$ . - (7) Repeat technique of (4) through (6) above for remaining **LRC** dial settings listed in table 5. Resistance bridge will indicate within computed limits specified. - **b.** Adjustments. No adjustments can be made. Table 5. LRC Dials Resistance Values | Test instrument | Resistance standard | Compu | ted difference | |-----------------|---------------------|--------|----------------| | LRC dials | indications | Min | Max | | 0.040 | 40 | 39 | 41 | | 0.060 | 60 | 59 | 61 | | 0.080 | 80 | 79 | 81 | | 0.0X (100) | 100 | 99 | 101 | | 0.100 | 100 | 99.95 | 100.05 | | 0.200 | 200 | 199.90 | 200.10 | | 0.300 | 300 | 299.85 | 300.15 | | 0.400 | 400 | 399.80 | 400.20 | | 0.500 | 500 | 499.75 | 500.25 | | 0.600 | 600 | 599.70 | 600.30 | | 0.700 | 700 | 699.65 | 700.35 | | 0.800 | 800 | 799.60 | 800.40 | | 0.900 | 900 | 899.55 | 900.45 | | 0.X | 1000 | 999.50 | 1000.50 | | 1.000 | 1000 | 999.5 | 1000.5 | | 2.000 | 2000 | 1999.0 | 2001.0 | | 3.000 | 3000 | 2998.5 | 3001.5 | | 4.000 | 4000 | 3998.0 | 4002.0 | | 5.000 | 5000 | 4997.5 | 5002.5 | Table 5. LRC Dials Resistance Values - Continued | Test instrument | Resistance standard | Compi | ated difference | |-----------------|---------------------|----------|-----------------| | LRC dials | indications | Min | Max | | 6.000 | 6000 | 5997.0 | 6003.0 | | 7.000 | 7000 | 6996.5 | 7003.5 | | 8.000 | 8000 | 7996.0 | 8004.0 | | 9.000 | 9000 | 8995.5 | 9004.5 | | 10.000 | 10000 | 9995.0 | 10,005.0 | | 11.000 | 11000 | 10,994.5 | 11,005.5 | # 17. QX1 Rheostat # a. Performance Check - (1) Position controls as listed in (a) through (d) below: - (a) **FUNCTION** switch to **L-QX1 SERIES**. - (b) **DET GAIN** control to **OFF**. - (c) **GEN-DET** switch to **BATT TEST**. - (d) **EXT D-Q** terminals shorting strap removed. - (2) Connect lead from resistance bridge UNKNOWN 1 terminal to EXT D-Q 2 terminal and connect lead from resistance bridge (part of resistance measurement system), UNKNOWN 2 terminal to TI C3 terminal. - (3) Set TI D-Q SERIES dial to 2. - (4) Adjust resistance bridge for a null indication on dc detector (part of resistance measuring system). - (5) If resistance bridge does not indicate between 2992 and 3375 $\Omega$ , perform **b** below. - (6) Repeat technique of (3) through (5) above for **D-Q SERIES** dial settings listed in table 6. If resistance bridge does not indicate within limits specified, and adjustment was not required in (5) above, perform **b** below. - (7) Replace shorting strap between **EXT D-Q** terminals. # b. Adjustments - (1) Set resistance bridge control to 3184 $\Omega$ . - (2) Adjust **D-Q SERIES** dial for null indication on dc detector. - (3) Loosen setscrew on **D-Q SERIES** dial and, while maintaining a null dc detector, set dial to indicate 2. Tighten setscrew. - (4) Repeat **a** (6) above. Table 6. QX1 Rheostat Accuracy | Test instrument D-Q SERIES dial settings | Resistance standard initial settings | Resistance bridge indications (part of resistance measurement system) $(\Omega)$ | | |------------------------------------------|--------------------------------------|----------------------------------------------------------------------------------|--------| | | | Min | Max | | 4 | 6320 | 6151 | 6597 | | 6 | 9650 | 9295 | 9805 | | 8 | 12,727 | 12,444 | 13,017 | | 10 | 16,000 | 15,601 | 16,238 | ## 18. Resistance - (1) Certify resistance standard values with leads at 1, 10 and 100 $\Omega$ ; 1, 10, and 100 $k\Omega$ ; and 1 M $\Omega$ settings respectively using resistance bridge and dc detector (part of resistance measurement system). Record each value to 100 ppm. - (2) Set RANGE switch to RX0.1 $\Omega$ and FUNCTION switch to RX1. - (3) Set GEN-DET switch to INT-DC and DET-GAIN control to 2. - (4) Connect equipment as shown in figure 3. - (5) Adjust resistance standard to 1.00 $\Omega$ . - (6) Adjust LRC DIALS until dc detector indicates null. - (7) TI dials will indicate within ±.1 percent plus one dial division of certified value recorded in (1) above. - (8) Repeat technique of (5) through (7) above for **RANGE** switch settings of **RX1**, **10**, **100**, **1K**, **10K**, and **100K**, with resistance standard set to 10 and 100 $\Omega$ ; 1, 10, and 100 $\Omega$ ; and 1 M $\Omega$ , respectively. Figure 3. Resistance - equipment setup. - (9) Set RANGE switch to RX100 $\Omega$ and FUNCTION switch to RX 10. - (10) Adjust resistance standard for 10 k $\Omega$ . - (11) Adjust TI LRC dials until dc detector indicates null. - (12) TI dials will indicate within $\pm$ .1 percent plus one dial division of certified value recorded in (1) above. - **b.** Adjustments. No adjustments can be made. # 19. Oscillator # a. Performance Check - (1) Adjust TI **DET GAIN** control cw from **PWR OFF** position and **GEN DET** switch **AC DET INT 1 KHz**. - (2) Connect frequency counter to TI **R-L1** (high) terminal and **EXT BIAS 1** (low) terminal. Frequency counter will indicate between 990 and 1010 Hz. - **b.** Adjustments. No adjustments can be made. # 20. Capacitance # a. Performance Check - (1) Position TI controls as listed in (a) through (c) below: - (a) FUNCTION switch to CDx0.01 SERIES. - (b) **D-Q SERIES** dial to **0**. - (c) RANGE switch to $Cx0.01 \mu F$ . - (2) Insert capacitance standard into 2C and 3C terminals. - (3) Adjust TI LRC dial, **D-Q SERIES** dial, and **DET GAIN** control to obtain best null indication on TI meter. - (4) If LRC dials do not indicate within $\pm 0.2$ percent plus (+) one dial division of certified value of standard capacitor, perform b below. #### b. Adjustments - (1) Remove TI from case. - (2) Set RANGE switch to 0.1 µF. - (3) Set TI LRC dials to 1.000. - (4) Adjust **D-Q** dials and trim capacitor C1 (attached to capacitance standard located above the transformer) alternately until null is obtained on meter (R). - (5) Install TI in its case. # 21. Dissipation - (1) Connect equipment as shown in figure 4. - (2) Adjust resistance standard to $31.85 \Omega$ . - (3) Adjust TI LRC dial, **D-Q SERIES** dial, and **DET GAIN** control for best null indication on meter. **D-Q SERIES** dial will indicate between 1.88 and 2.12. - (4) Repeat technique of (2) and (3) above, using resistance standard settings listed in table 7. **D-Q SERIES** dial will indicate within limits specified. Table 7. Low Dissipation Accuracy | Resistance standard settings | Test instrument <b>D-Q SERIES</b> dial indications | | | |------------------------------|----------------------------------------------------|------|--| | $(\Omega)$ | Min | Max | | | 63.70 | 3.86 | 4.14 | | | 94.54 | 5.84 | 6.16 | | | 127.39 | 7.82 | 8.18 | | | 143.32 | 8.81 | 9.19 | | - (5) Set FUNCTION switch to CDx0.1 SERIES. - (6) Adjust resistance standard to 318.48 $\Omega$ . - (7) Adjust LRC dial **D-Q SERIES** dial, and **DET GAIN** control for best null indication on meter. **D-Q SERIES** dial will indicate between 1.88 and 2.12. Figure 4. Dissipation - equipment setup. - (8) Repeat technique of (6) and (7) above, using resistance standard settings listed in table 8. **D-Q SERIES** dial will indicate within limits specified. - **b.** Adjustments. No adjustments can be made. Table 8. High Dissipation Accuracy | Resistance standard | Test instrument <b>D-Q SERIES</b> dial indications | | | | | |---------------------|----------------------------------------------------|------|--|--|--| | settings $(\Omega)$ | Min | Max | | | | | 636.96 | 3.86 | 4.14 | | | | | 955.44 | 5.84 | 6.16 | | | | | 1273.92 | 7.82 | 8.18 | | | | | 1433.16 | 8.81 | 9.19 | | | | # 22. Final Procedure - a. Deenergize and disconnect all equipment. - **b.** Annotate and affix DA label/form in accordance with TB 750-25. By Order of the Secretary of the Army: PETER J. SCHOOMAKER General, United States Army Chief of Staff Official SANDRA R. RILEY Administrative Assistant to the Secretary of the Army 0515702 # Distribution: To be distributed in accordance with the initial distribution number (IDN) 342114, requirements for calibration procedure TB 9-6625-1014-35. ## Instructions for Submitting an Electronic 2028 The following format must be used if submitting an electronic 2028. The subject line must be exactly the same and all fields must be included; however, only the following fields are mandatory: 1, 3, 4, 5, 6, 7, 8, 9, 10, 13, 15, 16, 17, and 27. From: "Whomever" whomever@redstone.army.mil To: <2028@redstone.army.mil Subject: DA Form 2028 1. **From**: Joe Smith 2. Unit: home Address: 4300 Park City: Hometown 5. St: MO6. Zip: 77777 7. **Date Sent**: 19-OCT -93 8. **Pub no**: 55-2840-229-23 9. Pub Title: TM 10. Publication Date: 04-JUL-85 11. Change Number: 7 12. Submitter Rank: MSG 13. Submitter FName: Joe 14. Submitter MName: T 15. Submitter I Name: Smith 15. Submitter LName: Smith 16. Submitter Phone: 123-123-1234 17. **Problem**: 1 18. Page: 2 19. Paragraph: 3 20. Line: 421. NSN: 522. Reference: 623. Figure: 724. Table: 8 25. Item: 926. Total: 123 27. **Text** This is the text for the problem below line 27. PIN: 011236-000